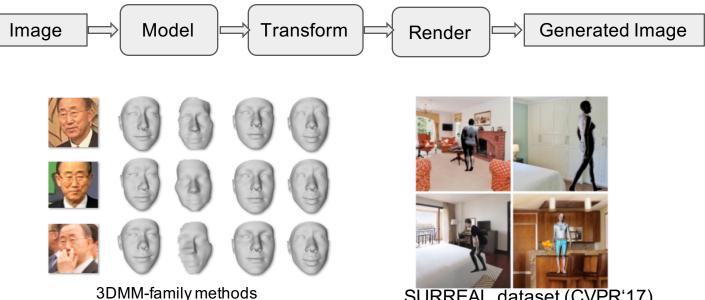
GeneGAN

Learning Object Transfiguration and Attribute Subspace from Unpaired Data

Taihong Xiao Nov. 1, 2017

Conditional Image Generation

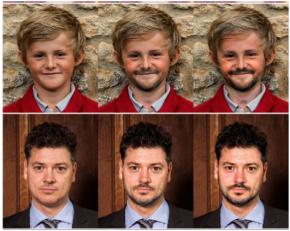
- Applications: Image Editing, Training Data Synthesis
- Photo-realistic modeling and rendering are difficult.



http://cn.arxiv.org/pdf/1612.04904.pdf

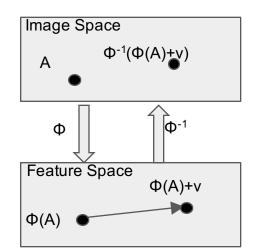
SURREAL dataset (CVPR'17)

Feature Space Transformation



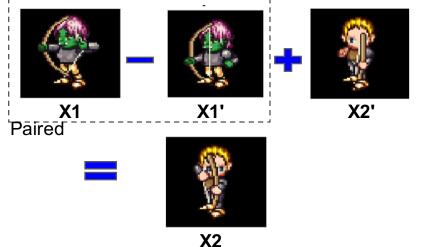
 $\Phi^{-1}(\Phi(A)) \quad \Phi^{-1}(\Phi(A)+\frac{1}{2}v) \quad \Phi^{-1}(\Phi(A)+v$ Deep Feature Interpolation (2016)

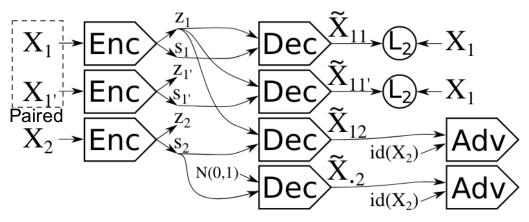
Transformation vector **v** as difference between feature cluster centers. Diversity limited by the number of clusters.



Generation by Exemplars with Paired Training Data

- Using a pair of image for specifying the transformation
 - Increase diversity.
 - But paired training data are hard to collect





Deep Visual Analogy-Making, NIPS'15

Disentangling Factors of Variation, NIPS'16 X1 and X1' are required to have the same label, i.e., s1 == s1'.

Feature Space Interpolation Methods

	Generation by Exemplar	Unpaired Training data	Exploits Cyclic Loss
Deep Feature Interpolation	×	\checkmark	×
InfoGAN	×	✓	×
Visual Analogy- Making	\checkmark	×	×
Disentangling Factors of Variation	\checkmark	×	\checkmark
CycleGAN	×	\checkmark	\checkmark
GeneGAN	\checkmark	\checkmark	\checkmark

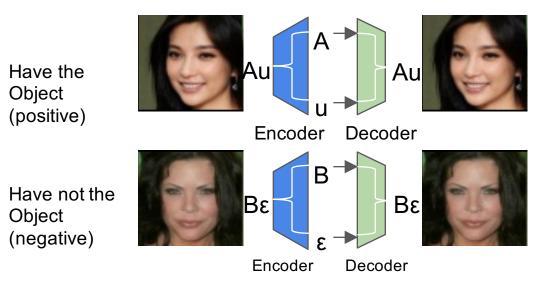
GeneGAN Training Data

- A positive set and a negative set
 - need not be paired

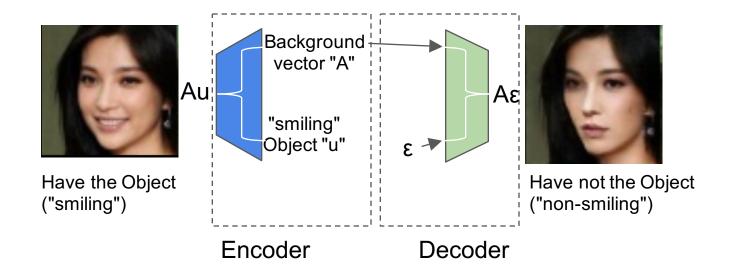
	Glasses	Hair	Lighting	Smiling
Positive	Eyeglass/sun glasses	Bangs	Side/Up/Down	Smiling
Negative	No glasses	Bald/Receding Hairline	Frontal lighting	Not smiling

GeneGAN components: Encoder and Decoder

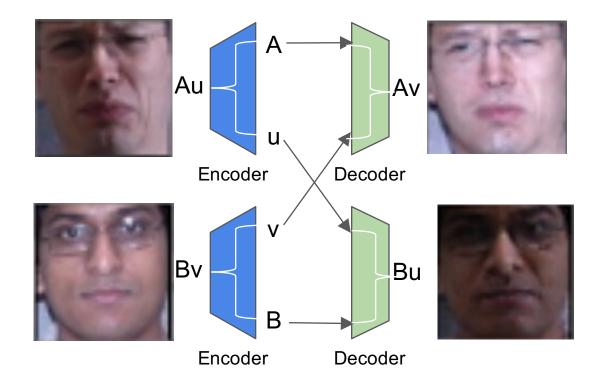
- Encoder: disentangle the object (smiling) from the background (face). Object can be abstract.
- Decoder: inverse of Encoder

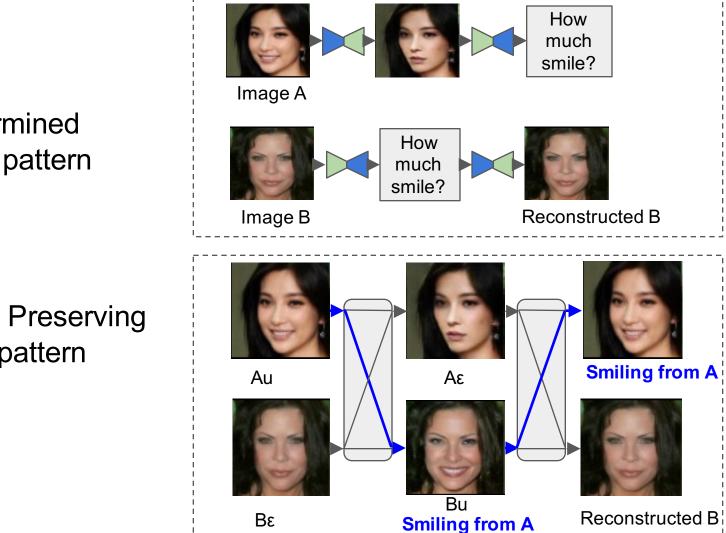


GeneGAN Usage: Object Removal



GeneGAN Usage: Swapping Objects



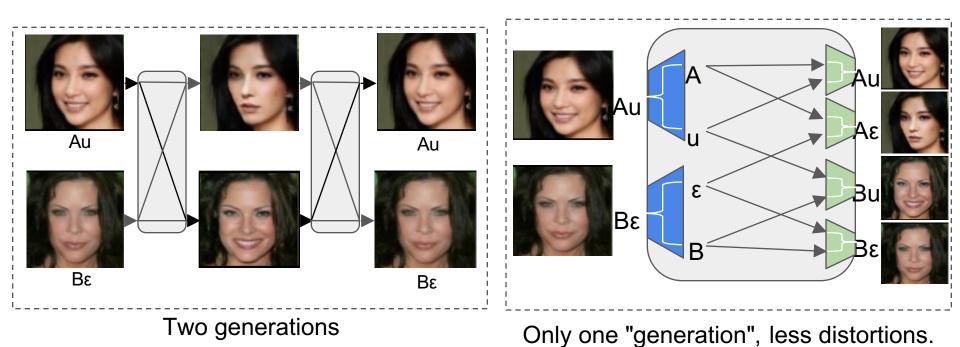


Underdetermined CycleGAN pattern

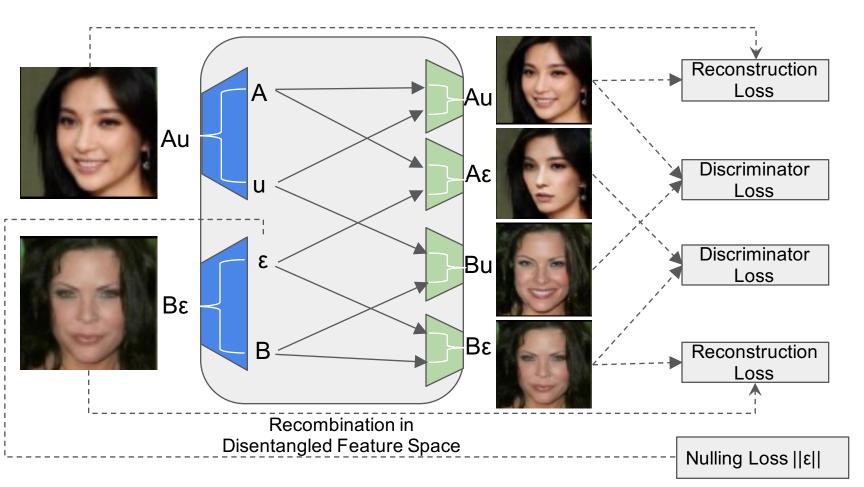
Information Preserving GeneGAN pattern

Shorten the Cycle to help Training

• Lift the grandchildren to be children



GeneGAN Training Diagram



Mechanism

- Constraints
 - Discriminator loss used in Adversarial Training
 - The background output of encoder will not contain smiling information, as "Bε" is not smiling
 - "u" contains the smiling information. As "Bu" is smiling.
 - \circ Nulling loss
 - the object output of encoder will not contain background information, as "ε" can replace it without problem.
 - Reconstruction loss
 - Decoder and Encoder are inverse to each other
 - "A" contains background information, as Decoder can recreate "Au" from "A" and "u"

Experiments: Diversity from Exemplars

Exemplar objects

Exemplar backgrounds The same sunglasses

Novel instances

Swapping Attributes: Diversity of Smiles

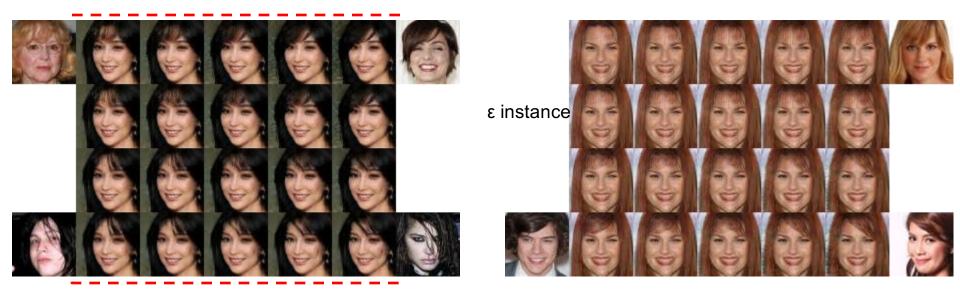
Can tell a smile by the mouth, and sometimes by eyes.

Object Subspace

• Multidimensional representation of hair

Interpolation in Object Subspace

Check the directions of the hairs.



Bi-linearly interpolated

Conclusion & Future Work

- Disentangle the factors in feature space
 - Feature space = object space + background space
- Only require unpaired training data
 - Two unpaired image: positive and negative
- Usage cases
 - For single input, can output disentangled object code and background code.
 - For two inputs that both contain objects, can swap the objects in them. The objects can be null.
 - Can interpolate the objects in feature space.
- Futre work
 - Investigate whether more complex crossbreeding patterns between more parents would allow further improvements

References

- Yoshua Bengio, Grégoire Mesnil, Yann Dauphin, and Salah Rifai. Better mixing via deep representations. In Proceedings of the 30th International Conference on Machine Learning, ICML 2013, Atlanta, GA, USA, 16-21 June 2013, pages 552–560, 2013. URL <u>http://jmlr.org/proceedings/papers/v28/bengio13.html</u>.
- 2. Scott E. Reed, Yi Zhang, Yuting Zhang, and Honglak Lee. Deep visual analogy-making. In Advances in Neural Information Processing Systems 28: Annual Con-ference on Neural Information Processing Systems 2015, December 7-12, 2015, Mon-treal, Quebec, Canada, pages 1252–1260, 2015. URL http://papers.nips. cc/paper/5845-deep-visual-analogy-making.
- 3. Paul Upchurch, Jacob R. Gardner, Kavita Bala, Robert Pless, Noah Snavely, and Kil-ian Q. Weinberger. Deep feature interpolation for image content changes. CoRR, abs/1611.05507, 2016. URL <u>http://arxiv.org/abs/1611.05507</u>.
- 4. Michaël Mathieu, Junbo Jake Zhao, Pablo Sprechmann, Aditya Ramesh, Yann LeCun: Disentangling factors of variation in deep representation using adversarial training. NIPS 2016: 5041-5049
- 5. Xi Chen, Xi Chen, Yan Duan, Rein Houthooft, John Schulman, Ilya Sutskever, Pieter Abbeel: InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets. NIPS 2016: 2172-2180
- 6. Gül Varol, Javier Romero, Xavier Martin, Naureen Mahmood, Michael J. Black, Ivan Laptev, Cordelia Schmid: Learning from Synthetic Humans. CoRR abs/1701.01370 (2017)
- 7. Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A. Efros. Unpaired image-to-image translation using cycle-consistent adversarial networks. CoRR, abs/1703.10593, 2017. URL <u>http://arxiv.org/abs/1703.10593</u>.

More in the paper.

Backup after this slide

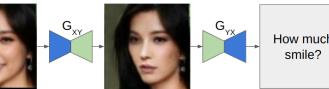
Github: https://github.com/Prinsphield/GeneGAN

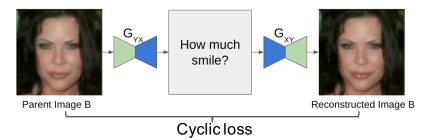
CycleGAN/DiscoGAN and Object Transfiguration

- Pros
 - Learn from Unpaired Data Ο
 - Exploits Cyclic loss to Ο stabilize training
- Cons
 - Backgrounds change when Ο transforming objects
 - Under-determination Ο problem
 - non-smiling is well defined. But smiling's have different levels and styles.

input

Parent Image A

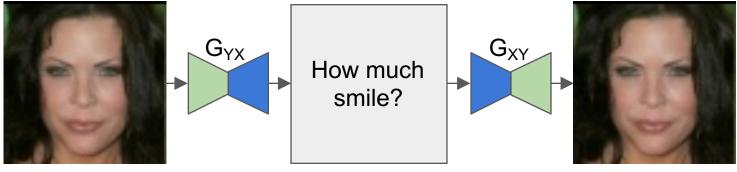




Underdetermination Problem

Parent Image A

Assumed non-smiling face



Parent Image B

Reconstructed Image B

Parallelogram loss

