An Integrated Framework for Pedestrian Tracking

Taihong Xiao, Jinwen Ma

Department of Information Science, School of Mathematical Science and LMAM, Peking University

Why Pedestrian Tracking?

General Object Tracking

VOT Challenges

Pedestrian Tracking

- Various gestures, appearances and poses
- 2. Distraction from similar person
- 3. Complete occlusion

The ILFPT Model Overview

Target Prediction

Assume that we are tracking on frame t, the speed of the target in the current frame can be estimated by

$$v_x^{t} = \rho v_x^{t} + (1 - \rho) \Delta_x^{t-1},$$

$$v_y^{t} = \rho v_y^{t-1} + (1 - \rho) \Delta_y^{t-1}$$

where v_x^{t-1} and v_y^{t-1} are respectively the horizontal and vertical speed in frame $t - 1, \rho \in [0,1]$ is the momentum factor that controls the weights of the previous speed and $\Delta_x^{t-1} = x^{t-1} - x^{t-2}, \Delta_y^{t-1} = y^{t-1} - y^{t-2}$

Therefore, the center of tracking window in frame t can be predicted as

$$\begin{aligned} x^t &= x^{t-1} + v_x^t \\ y^t &= y^{t-1} + v_y^t \end{aligned}$$

Two Sampling Techniques

Local sampling

Faster RCNN sampling

Detection Frames & Non-detection Frames

Non-detection Frames

- 1. Faster RCNN sampling is activated in detection frames.
- 2. Faster RCNN sampling helps adapt the bounding box size.
- **3.** Switching scheme improves speed.

Online Learning Model

A positive sample set S^+ and a negative sample set S^- are initialized for storing new pedestrian patterns and updating online model. For each candidate sample *c*, we obtain a compressed low-dimensional feature $\mathbf{v} = (v_1, v_2, ..., v_n)^T \in \mathbb{R}^n$.

$$R(\mathbf{v}) = \log \frac{p(y=1|\mathbf{v})}{p(y=0|\mathbf{v})} = \sum_{i=1}^{n} \log \frac{p(v_i|y=1)}{p(v_i|y=0)}$$

The conditional probabilities are assumed to be Gaussian distributed with four parameters $(\mu_i^1, \sigma_i^1, \mu_i^0, \sigma_i^0)$

$$p(v_i|y=1) = \mathcal{N}(\mu_i^1, \sigma_i^1), \quad p(v_i|y=0) = \mathcal{N}(\mu_i^0, \sigma_i^0)$$

Online Learning Model

Update rules for parameters

$$\sigma_{i}^{j} \leftarrow \sqrt{\lambda \left(\sigma_{i}^{j}\right)^{2} + (1 - \lambda) \left(\widetilde{\sigma}_{i}^{j}\right)^{2} + \lambda(1 - \lambda) \left(\mu_{i}^{j} - \widetilde{\mu}_{i}^{j}\right)^{2}} \\ \mu_{i}^{j} \leftarrow \lambda \mu_{i}^{j} + (1 - \lambda) \widetilde{\mu}_{i}^{j} \\ (i = 1, 2, ..., n; j = 0, 1)$$

where $\lambda \in (0,1)$ is the inertial factor that controls the updating speed and

$$\tilde{\mu}_{i}^{j} = \frac{1}{|S_{j}|} \sum_{k \in S_{j}} v_{i}(k)$$
$$\tilde{\sigma}_{i}^{j} = \sqrt{\frac{1}{|S_{j}|}} \sum_{k \in S_{j}} (v_{i}(k) - \tilde{\mu}_{i}^{j})^{2}$$

Evaluation Methodology

Center Location Error (CLE)

Pascal VOC overlap ratio (VOR)

Experimental Results

Precision Curve

Success Curve

Effectiveness of Deep Re-id Feature

Precision Curve

0.7

0.8

0.9

Video Demo

https://www.youtube.com/watch?v=HQIi0Z9b4Pw

An Integrated Framework for Pedestrian Tracking

Taihong Xiao, Jinwen Ma Peking University

