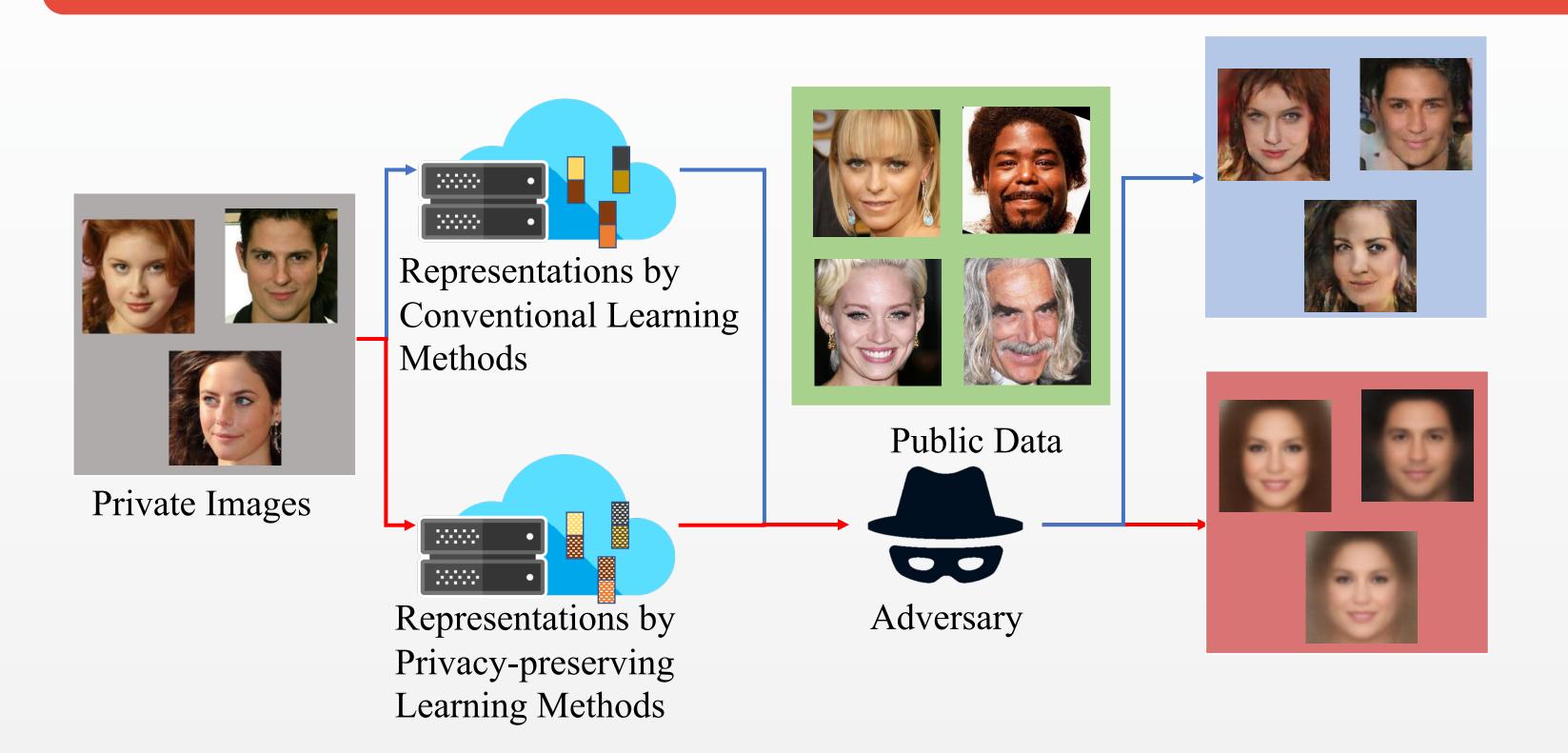
Adversarial Learning of Privacy-Preserving and Task-Oriented Representations

Taihong Xiao¹, Yi-Hsuan Tsai², Kihyuk Sohn², Manmohan Chandraker^{2,3}, Ming-Hsuan Yang¹

¹University of California, Merced ²NEC Laboratories America ³University of California, San Diego

Introduction



Motivation

- Privacy risk in machine learning cloud services
- Learning deep features that protect the privacy

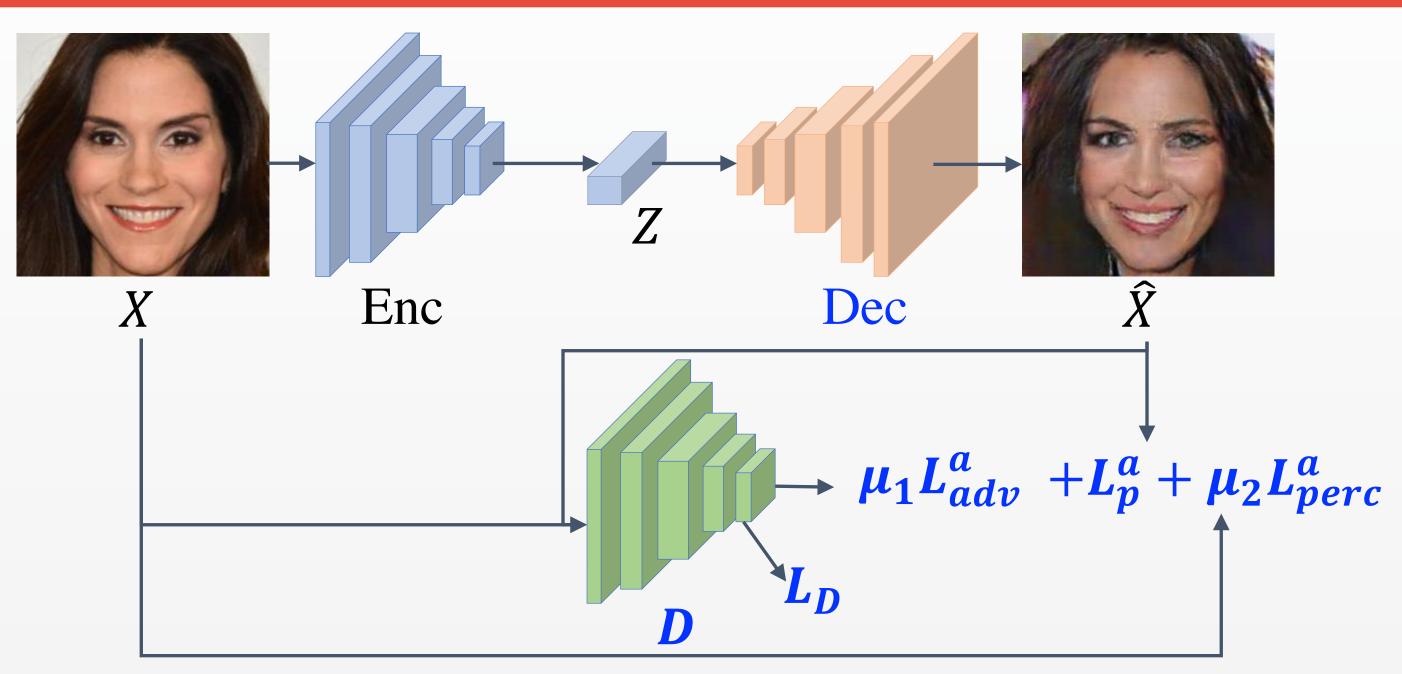
Problem Context

- Black-box model inversion: the adversary can make unlimited inferences of their own data to recover input from acquired features of private user data
- Defense against black-box model inversion attacks in the context of face attribute analysis via adversarial learning

Our Solution

- Propose to consider perspectives from both the adversary and protector to learn privacy-preserved models
- Seek for balancing utility on face attribute classification while protecting the facial privacy
- Provide extensive study to analyze the impact on privacy protection in the proposed framework

Proposed Algorithm

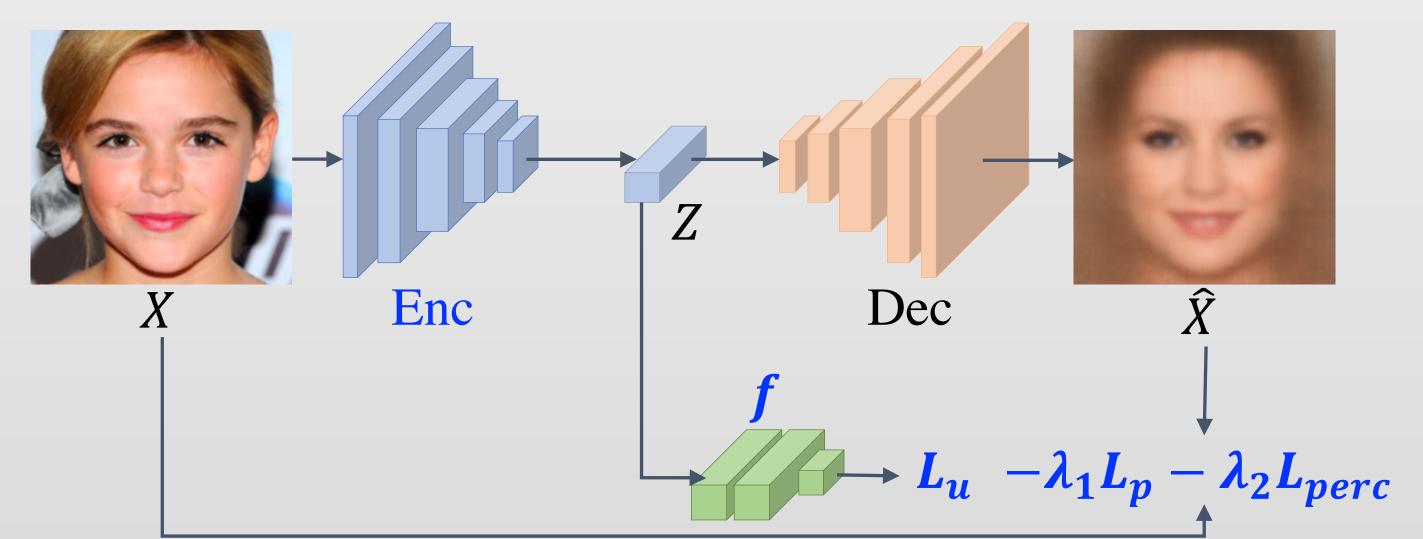


Adversary: updating Dec and D using public data \mathcal{X}_2 while fixing Enc and f

- Privacy loss: $L_p^a = \mathbb{E}_{\{(X \in \mathcal{X}_2, Z)\}}[\| \hat{X} X \|^2]$
- GAN loss: $L_{\text{adv}}^a = \mathbb{E}_Z[\log(1 D(\hat{X}))]$
- Perceptual loss: $L_{\text{perc}}^a = \mathbb{E}_{\{(X \in \mathcal{X}_2, Z)\}}[\parallel g(\text{Dec}^a(Z)) g(X) \parallel^2]$

The overall objective of an adversary is

$$\min_{\mathrm{Dec}^a} L_p^a + \mu_1 L_{\mathrm{adv}}^a + \mu_2 L_{\mathrm{perc}}^a$$



Protector: updating Enc and f using private data X_1 while fixing Dec

- Utility loss: $L_u = \mathbb{E}_{\{(X \in \mathcal{X}_1, Y)\}}[\mathcal{L}(f(Z), Y]$
- GAN loss: $L_p = \mathbb{E}_{\{(X \in \mathcal{X}_1, Z)\}}[\| \operatorname{Dec}(Z) X \|^2]$
- Perceptual loss: $L_{\text{perc}} = \mathbb{E}_{\{(X \in \mathcal{X}_1, Z)\}}[\| g(\text{Dec}(Z)) g(X) \|^2]$

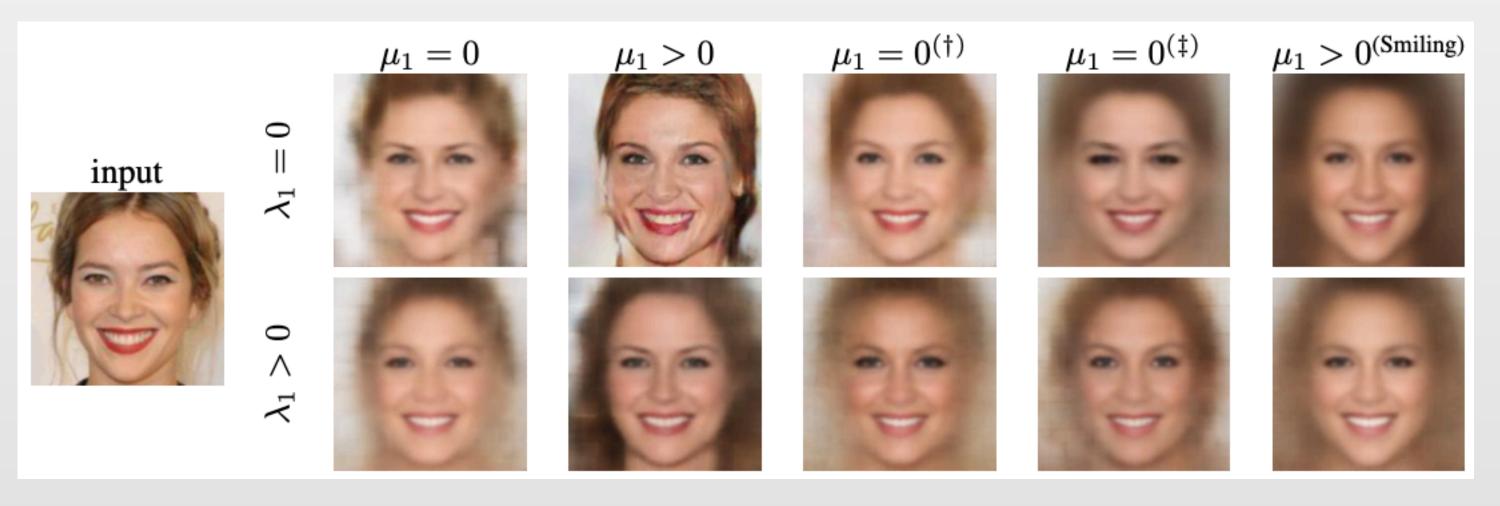
The overall objective of an adversary is

$$\min_{\text{Enc},f} L_u - \lambda_1 L_p - \lambda_2 L_{\text{perc}}$$

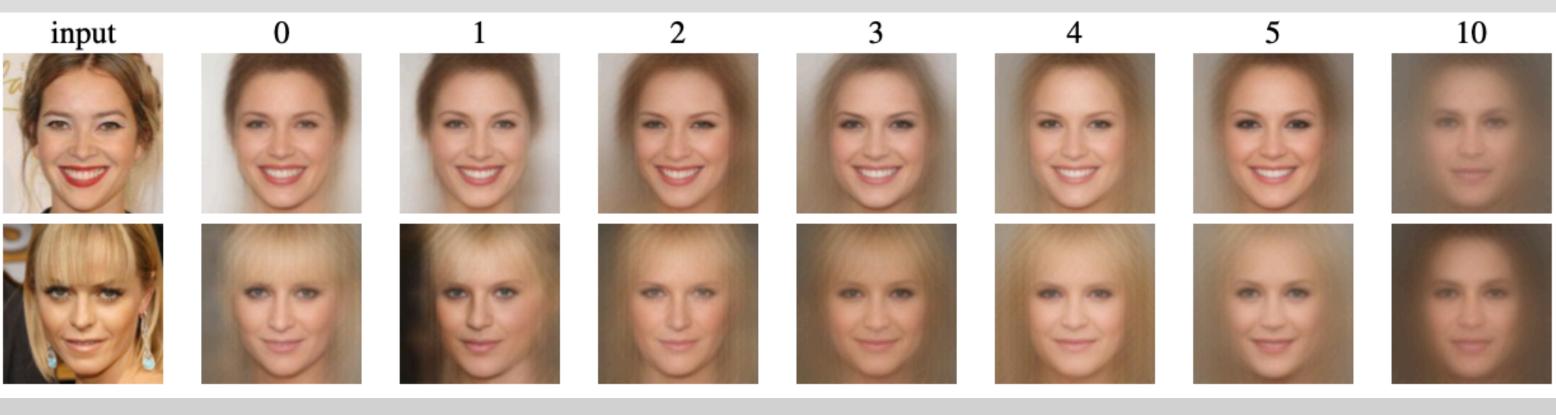
Experimental Results

ID	Enc	$ \operatorname{Dec}^a $	Mean MCC ↑	Face Sim. ↓	Feature Sim. ↓	SSIM	PSNR
1	$\lambda_1 = 0$	$\mu_1 = 0$	0.641	0.551	0.835	0.231	13.738
2	$\lambda_1 > 0$	$\mu_1 = 0$	0.612	0.515	0.574	0.221	13.423
3	$\lambda_1 = 0$	$\mu_1 > 0$	0.641	0.585	0.835	0.240	14.065
4	$\lambda_1 > 0$	$\mu_1 > 0$	0.612	0.513	0.574	0.277	13.803
With more data for training Dec^a (ID #5 and #6) and both Enc and Dec^a (ID #7 and #8)							
5	$\lambda_1=0^\dagger$	$\mu_1 = 0$	0.641	0.594	0.864	0.250	14.132
6	$\lambda_1>0^\dagger$	$\mu_1 = 0$	0.612	0.541	0.633	0.222	13.703
7	$\lambda_1=0^{\ddagger}$	$\mu_1 = 0$	0.651	0.579	0.834	0.263	14.432
8	$\lambda_1>0^{\ddagger}$	$\mu_1 = 0$	0.630	0.550	0.591	0.231	13.334
Single (Smiling) attribute prediction. MCC for Smiling attribute is reported in the parenthesis.							
9	$\lambda_1 = 0$	$\mu_1 > 0$	0.001 (0.851)	0.460	0.494	0.204	13.214
10	$\lambda_1 > 0$		0.044 (0.862)	0.424	0.489	0.189	12.958

Results on facial attribute prediction. We report the MCC over 40 attributes as a utility metric, while face and feature similarities are privacy metrics.



Visualization of reconstruction by Dec^a. Examples in the first and second row are results with/without employing the negative reconstruction loss.



Results with different λ_2 in the training stage. As we increase λ_2 , the model becomes more privacy-preserved.