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Conditional Image Generation
● Applications: Image Editing, Training Data Synthesis
● Photo-realistic modeling and rendering are difficult.

SURREAL dataset (CVPR‘17)3DMM-family methods
http://cn.arxiv.org/pdf/1612.04904.pdf
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Feature Space Transformation
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Generation by Exemplars with Paired Training Data
● Using a pair of image for specifying the transformation

○ Increase diversity.
○ But paired training data are hard to collect.

Deep Visual Analogy-Making, NIPS'15 Disentangling Factors of Variation, NIPS'16
X1 and X1' are required to have the same label, 
i.e., s1 == s1'.

X1 X1' X2'

X2

Paired
Paired



Feature Space Interpolation Methods
Generation by 
Exemplar

Unpaired Training 
data

Exploits Cyclic 
Loss

Deep Feature 
Interpolation

InfoGAN

Visual Analogy-
Making

Disentangling 
Factors of Variation

CycleGAN

GeneGAN



GeneGAN Training Data
● A positive set and a negative set

○ need not be paired

Glasses Hair Lighting Smiling

Positive Eyeglass/sun 
glasses

Bangs Side/Up/Down Smiling

Negative No glasses Bald/Receding 
Hairline

Frontal lighting Not smiling



GeneGAN components: Encoder and Decoder
● Encoder: disentangle the object (smiling) from the background 

(face). Object can be abstract.
● Decoder: inverse of Encoder

A

u
Au Au

Encoder Decoder

B

ε
Bε Bε

Encoder Decoder

Have the 
Object 
(positive)

Have not the 
Object 
(negative)

Background

Object



GeneGAN Usage: Object Removal
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GeneGAN Usage: Swapping Objects
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Shorten the Cycle to help Training
● Lift the grandchildren to be children
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Mechanism

● Constraints
○ Discriminator loss used in Adversarial Training

■ The background output of encoder will not contain smiling 
information, as "Bε" is not smiling

■ "u" contains the smiling information. As "Bu" is smiling.
○ Nulling loss

■ the object output of encoder will not contain background information, 
as "ε" can replace it without problem.

○ Reconstruction loss
■ Decoder and Encoder are inverse to each other
■ "A" contains background information, as Decoder can recreate "Au" 

from "A" and "u"



Experiments: Diversity from Exemplars
Exemplar 
objects

Novel instancesExemplar 
backgrounds

The same 
sunglasses



Swapping Attributes: Diversity of Smiles

Can tell a smile by the mouth, and sometimes by eyes.



Object Subspace
● Multidimensional representation of hair



Interpolation in Object Subspace
Check the directions of the hairs.

Bi-linearly interpolated

ε instance



Conclusion & Future Work
● Disentangle the factors in feature space

○ Feature space = object space + background space

● Only require unpaired training data
○ Two unpaired image: positive and negative

● Usage cases
○ For single input, can output disentangled object code and background code.
○ For two inputs that both contain objects, can swap the objects in them. The objects can be 

null.
○ Can interpolate the objects in feature space.

● Futre work
○ Investigate whether more complex crossbreeding patterns between more parents would allow 

further improvements
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More in the paper.



Backup after this slide

Github: https://github.com/Prinsphield/GeneGAN



CycleGAN/DiscoGAN and Object Transfiguration

● Pros
○ Learn from Unpaired Data
○ Exploits Cyclic loss to 

stabilize training
● Cons

○ Backgrounds change when 
transforming objects

○ Under-determination 
problem
■ non-smiling is well 

defined. But smiling's 
have different levels 
and styles. Cyclic loss



Underdetermination Problem
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Parallelogram loss

Recombination Recombination

Parallelogram Loss
L = ||xAu + xBε - xBu - xAε ||

Au

Bε

Aε

Bu

Induces Bu to have sunglasses.


